122 research outputs found

    Prenatal Stress due to a Natural Disaster Predicts Adiposity in Childhood: The Iowa Flood Study

    Get PDF
    Prenatal stress can affect lifelong physical growth, including increased obesity risk. However, human studies remain limited. Natural disasters provide models of independent stressors unrelated to confounding maternal characteristics. We assessed degree of objective hardship and subjective distress in women pregnant during severe flooding. At ages 2.5 and 4 years we assessed body mass index (BMI), subscapular plus triceps skinfolds (SS + TR, an index of total adiposity), and SS: TR ratio (an index of central adiposity) in their children (n=106). Hierarchical regressions controlled first for several potential confounds. Controlling for these, flood exposure during early gestation predicted greater BMI increase from age 2.5 to 4, as well as total adiposity at 2.5. Greater maternal hardship and distress due to the floods, as well as other nonflood life events during pregnancy, independently predicted greater increase in total adiposity between 2.5 and 4 years. These results support the hypothesis that prenatal stress increases adiposity beginning in childhood and suggest that early gestation is a sensitive period. Results further highlight the additive effects of maternal objective and subjective stress, life events, and depression, emphasizing the importance of continued studies on multiple, detailed measures of maternal mental health and experience in pregnancy and child growth

    An Additional Motor-Related Field in the Lateral Frontal Cortex of Squirrel Monkeys

    Get PDF
    Our earlier efforts to document the cortical connections of the ventral premotor cortex (PMv) revealed dense connections with a field rostral and lateral to PMv, an area we called the frontal rostral field (FR). Here, we present data collected in FR using electrophysiological and anatomical methods. Results show that FR contains an isolated motor representation of the forelimb that can be differentiated from PMv based on current thresholds and latencies to evoke electromyographic activity using intracortical microstimulation techniques. In addition, FR has a different pattern of cortical connections compared with PMv. Together, these data support that FR is an additional, previously undescribed motor-related area in squirrel monkeys

    Predicting Individual Treatment Response to rTMS for Motor Recovery After Stroke: A Review and the CanStim Perspective

    Get PDF
    BackgroundRehabilitation is critical for reducing stroke-related disability and improving quality-of-life post-stroke. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique used as stand-alone or adjunct treatment to physiotherapy, may be of benefit for motor recovery in subgroups of stroke patients. The Canadian Platform for Trials in Non-Invasive Brain Stimulation (CanStim) seeks to advance the use of these techniques to improve post-stroke recovery through clinical trials and pre-clinical studies using standardized research protocols. Here, we review existing clinical trials for demographic, clinical, and neurobiological factors which may predict treatment response to identify knowledge gaps which need to be addressed before implementing these parameters for patient stratification in clinical trial protocols.ObjectiveTo provide a review of clinical rTMS trials of stroke recovery identifying factors associated with rTMS response in stroke patients with motor deficits and develop research perspectives for pre-clinical and clinical studies.MethodsA literature search was performed in PubMed, using the Boolean search terms stroke AND repetitive transcranial magnetic stimulation OR rTMS AND motor for studies investigating the use of rTMS for motor recovery in stroke patients at any recovery phase. A total of 1,676 articles were screened by two blinded raters, with 26 papers identified for inclusion in this review.ResultsMultiple possible factors associated with rTMS response were identified, including stroke location, cortical thickness, brain-derived neurotrophic factor (BDNF) genotype, initial stroke severity, and several imaging and clinical factors associated with a relatively preserved functional motor network of the ipsilesional hemisphere. Age, sex, and time post-stroke were generally not related to rTMS response. Factors associated with greater response were identified in studies of both excitatory ipsilesional and inhibitory contralesional rTMS. Heterogeneous study designs and contradictory data exemplify the need for greater protocol standardization and high-quality controlled trials.ConclusionClinical, brain structural and neurobiological factors have been identified as potential predictors for rTMS response in stroke patients with motor impairment. These factors can inform the design of future clinical trials, before being considered for optimization of individual rehabilitation therapy for stroke patients. Pre-clinical models for stroke recovery, specifically developed in a clinical context, may accelerate this process

    Characterizing Genetic Diversity of Contemporary Pacific Chickens Using Mitochondrial DNA Analyses

    Get PDF
    Background\ud Mitochondrial DNA (mtDNA) hypervariable region (HVR) sequences of prehistoric Polynesian chicken samples reflect dispersal of two haplogroups—D and E—by the settlers of the Pacific. The distribution of these chicken haplogroups has been used as an indicator of human movement. Recent analyses suggested similarities between prehistoric Pacific and South American chicken samples, perhaps reflecting prehistoric Polynesian introduction of the chicken into South America. These analyses have been heavily debated. The current distribution of the D and E lineages among contemporary chicken populations in the Western Pacific is unclear, but might ultimately help to inform debates about the movements of humans that carried them.\ud \ud Objectives\ud We sought to characterize contemporary mtDNA diversity among chickens in two of the earliest settled archipelagoes of Remote Oceania, the Marianas and Vanuatu.\ud \ud Methods\ud We generated HVR sequences for 43 chickens from four islands in Vanuatu, and for 5 chickens from Guam in the Marianas.\ud \ud Results\ud Forty samples from Vanuatu and three from Guam were assigned to haplogroup D, supporting this as a Pacific chicken haplogroup that persists in the Western Pacific. Two haplogroup E lineages were observed in Guam and two in Vanuatu. Of the E lineages in Vanuatu, one was identical to prehistoric Vanuatu and Polynesian samples and the other differed by one polymorphism. Contrary to our expectations, we observed few globally distributed domesticate lineages not associated with Pacific chicken dispersal. This might suggest less European introgression of chickens into Vanuatu than expected. If so, the E lineages might represent lineages maintained from ancient Pacific chicken introductions. The Vanuatu sample might thus provide an opportunity to distinguish between maintained ancestral Pacific chicken lineages and replacement by global domesticates through genomic analyses, which could resolve questions of contemporary haplogroup E chicken relationships and inform interpretations of debated sequences from archaeological samples

    Challenges and opportunities in rapid disaster research: lessons from the field in New Mexico and Vanuatu

    Get PDF
    Rapid research is essential to assess impacts in communities affected by disasters, particularly those communities made “hard-to-reach” due to their active marginalization across history and in contemporary practices. In this article, we describe two rapid research projects developed to assess needs for and experiences of communities hard-hit by disasters. The first is a project on the COVID-19 pandemic in southern New Mexico (USA) that was developed to provide information to local agencies that are deploying programs to rebuild and revitalize marginalized communities. The second is a project on population displacement due to a volcanic eruption in Vanuatu, a lower-middle income country in the South Pacific, with mental and physical health outcomes data shared with the Vanuatu Ministry of Health. We describe the similar and unique challenges that arose doing rapid research in these two different contexts, the potential broader impacts of the research, and a synthesis of lessons learned. We discuss the challenges of rapidly changing rules and regulations, lack of baseline data, lack of survey instruments validated for specific populations and in local languages, limited availability of community partners, finding funding for rapid deployment of projects, rapidly training and working with research assistants, health and safety concerns of researchers and participants, and communicating with local and international partners. We also specifically discuss how we addressed our own personal challenges while also conducting time-intensive rapid research. In both studies, researchers shared results with governmental and non-governmental partners who may use the data to inform the design of their own relief programs. While different in context, type of disaster, and research strategy, our discussion of these projects provides insights into common lessons learned for working with communities at elevated risk for the worst outcomes during disasters, such as the need for flexibility, compromise, and good working relationships with community partners

    Prognostic value of cortically induced motor evoked activity by TMS in chronic stroke: caveats from a very revealing single clinical case

    Get PDF
    Background: We report the case of a chronic stroke patient (62 months after injury) showing total absence of motor activity evoked by transcranial magnetic stimulation (TMS) of spared regions of the left motor cortex, but near-to-complete recovery of motor abilities in the affected hand. Case presentation: Multimodal investigations included detailed TMS based motor mapping, motor evoked potentials (MEP), and Cortical Silent period (CSP) as well as functional magnetic resonance imaging (fMRI) of motor activity, MRI based lesion analysis and Diffusion Tensor Imaging (DTI) Tractography of corticospinal tract (CST). Anatomical analysis revealed a left hemisphere subinsular lesion interrupting the descending left CST at the level of the internal capsule. The absence of MEPs after intense TMS pulses to the ipsilesional M1, and the reversible suppression of ongoing electromyographic (EMG) activity (indexed by CSP) demonstrate a weak modulation of subcortical systems by the ipsilesional left frontal cortex, but an inability to induce efficient descending volleys from those cortical locations to right hand and forearm muscles. Functional MRI recordings under grasping and finger tapping patterns involving the affected hand showed slight signs of subcortical recruitment, as compared to the unaffected hand and hemisphere, as well as the expected cortical activations. Conclusions: The potential sources of motor voluntary activity for the affected hand in absence of MEPs are discussed. We conclude that multimodal analysis may contribute to a more accurate prognosis of stroke patients

    Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke

    Get PDF
    [EN] Background: Virtual and mixed reality systems have been suggested to promote motor recovery after stroke. Basing on the existing evidence on motor learning, we have developed a portable and low-cost mixed reality tabletop system that transforms a conventional table in a virtual environment for upper limb rehabilitation. The system allows intensive and customized training of a wide range of arm, hand, and finger movements and enables interaction with tangible objects, while providing audiovisual feedback of the participants' performance in gamified tasks. This study evaluates the clinical effectiveness and the acceptance of an experimental intervention with the system in chronic stroke survivors. Methods: Thirty individuals with stroke were included in a reversal (A-B-A) study. Phase A consisted of 30 sessions of conventional physical therapy. Phase B consisted of 30 training sessions with the experimental system. Both interventions involved flexion and extension of the elbow, wrist, and fingers, and grasping of different objects. Sessions were 45-min long and were administered three to five days a week. The body structures (Modified Ashworth Scale), functions (Motricity Index, Fugl-Meyer Assessment Scale), activities (Manual Function Test, Wolf Motor Function Test, Box and Blocks Test, Nine Hole Peg Test), and participation (Motor Activity Log) were assessed before and after each phase. Acceptance of the system was also assessed after phase B (System Usability Scale, Intrinsic Motivation Inventory). Results: Significant improvement was detected after the intervention with the system in the activity, both in arm function measured by the Wolf Motor Function Test (p < 0.01) and finger dexterity measured by the Box and Blocks Test (p < 0.01) and the Nine Hole Peg Test (p < 0.01); and participation (p < 0.01), which was maintained to the end of the study. The experimental system was reported as highly usable, enjoyable, and motivating. Conclusions: Our results support the clinical effectiveness of mixed reality interventions that satisfy the motor learning principles for upper limb rehabilitation in chronic stroke survivors. This characteristic, together with the low cost of the system, its portability, and its acceptance could promote the integration of these systems in the clinical practice as an alternative to more expensive systems, such as robotic instruments.The authors wish to thank the staff and patients of the Servicio de Neurorrehabilitación y Daño Cerebral de los Hospitales NISA for their involvement in the study. The authors also wish to thank the staff of LabHuman for their support in this project, especially Francisco Toledo and José Roda for their assistance. This study was funded in part by the Project TEREHA (IDI-20110844) and Project NeuroVR (TIN2013-44741-R) of the Ministerio de Economia y Competitividad of Spain, the Project Consolider-C (SEJ2006-14301/PSIC) of the Ministerio de Educacion y Ciencia of Spain, the "CIBER of Physiopathology of Obesity and Nutrition, an initiative of ISCIII", and the Excellence Research Program PROMETEO of the Conselleria de Educacion of Generalitat Valenciana (2008-157).Colomer Font, C.; Llorens Rodríguez, R.; Noé Sebastián, E.; Alcañiz Raya, ML. (2016). Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke. Journal of NeuroEngineering and Rehabilitation. 13:1-10. https://doi.org/10.1186/s12984-016-0153-6S11013Fregni F, Pascual-Leone A. Hand motor recovery after stroke: tuning the orchestra to improve hand motor function. Cogn Behav Neurol. 2006;19(1):21–33.Patten C, Condliffe EG, Dairaghi CA, Lum PS. Concurrent neuromechanical and functional gains following upper-extremity power training post-stroke. J Neuroeng Rehabil. 2013;10:1.Turolla A, Dam M, Ventura L, Tonin P, Agostini M, Zucconi C, et al. Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J Neuroeng Rehabil. 2013;10:85.Dancause N, Nudo RJ. Shaping plasticity to enhance recovery after injury. Prog Brain Res. 2011;192:273–95.Kwakkel G, Kollen B, Lindeman E. Understanding the pattern of functional recovery after stroke: facts and theories. Restor Neurol Neurosci. 2004;22(3–5):281–99.Nielsen JB, Willerslev-Olsen M, Christiansen L, Lundbye-Jensen J, Lorentzen J. Science-based neurorehabilitation: recommendations for neurorehabilitation from basic science. J Mot Behav. 2015;47(1):7–17.Shaughnessy M, Resnick BM. Using theory to develop an exercise intervention for patients post stroke. Top Stroke Rehabil. 2009;16(2):140–6.Subramanian SK, Massie CL, Malcolm MP, Levin MF. Does provision of extrinsic feedback result in improved motor learning in the upper limb poststroke? A systematic review of the evidence. Neurorehabil Neural Repair. 2010;24(2):113–24.Arya KN, Verma R, Garg RK, Sharma VP, Agarwal M, Aggarwal GG. Meaningful task-specific training (MTST) for stroke rehabilitation: a randomized controlled trial. Top Stroke Rehabil. 2012;19(3):193–211.Levin MF, Weiss PL, Keshner EA. Emergence of Virtual Reality as a Tool for Upper Limb Rehabilitation: Incorporation of Motor Control and Motor Learning Principles. Phys Ther. 2015;95(3):415–25.Laver K, George S, Thomas S, Deutsch JE, Crotty M. Cochrane review: virtual reality for stroke rehabilitation. Eur J Phys Rehabil Med. 2012;48(3):523–30.Cameirao MS, Badia SB, Duarte E, Frisoli A, Verschure PF. The combined impact of virtual reality neurorehabilitation and its interfaces on upper extremity functional recovery in patients with chronic stroke. Stroke. 2012;43(10):2720–8.Saposnik G, Levin M, G. Outcome Research Canada Working. Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians. Stroke. 2011;42(5):1380–6.Viau A, Feldman AG, McFadyen BJ, Levin MF. Reaching in reality and virtual reality: a comparison of movement kinematics in healthy subjects and in adults with hemiparesis. J Neuroeng Rehabil. 2004;1(1):11.Thornton M, Marshall S, McComas J, Finestone H, McCormick A, Sveistrup H. Benefits of activity and virtual reality based balance exercise programmes for adults with traumatic brain injury: perceptions of participants and their caregivers. Brain Inj. 2005;19(12):989–1000.Mazzoleni S, Puzzolante L, Zollo L, Dario P, Posteraro F. Mechanisms of motor recovery in chronic and subacute stroke patients following a robot-aided training. IEEE Trans Haptics. 2014;7(2):175–80.Duff M, Chen Y, Cheng L, Liu SM, Blake P, Wolf SL, et al. Adaptive mixed reality rehabilitation improves quality of reaching movements more than traditional reaching therapy following stroke. Neurorehabil Neural Repair. 2013;27(4):306–15.Mousavi Hondori, H., M. Khademi, L. Dodakian, A. McKenzie, C.V. Lopes, and S.C. Cramer, Choice of Human-Computer Interaction Mode in Stroke Rehabilitation. Neurorehabil Neural Repair, 2015.Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–7.Paternostro-Sluga T, Grim-Stieger M, Posch M, Schuhfried O, Vacariu G, Mittermaier C, et al. Reliability and validity of the Medical Research Council (MRC) scale and a modified scale for testing muscle strength in patients with radial palsy. J Rehabil Med. 2008;40(8):665–71.Kopp B, Kunkel A, Flor H, Platz T, Rose U, Mauritz KH, et al. The Arm Motor Ability Test: reliability, validity, and sensitivity to change of an instrument for assessing disabilities in activities of daily living. Arch Phys Med Rehabil. 1997;78(6):615–20.Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–98.Romero M, Sanchez A, Marin C, Navarro MD, Ferri J, Noe E. Clinical usefulness of the Spanish version of the Mississippi Aphasia Screening Test (MASTsp): validation in stroke patients. Neurologia. 2012;27(4):216–24.Llorens R, Marín C, Ortega M, Alcaniz M, Colomer C, Navarro MD, et al. Upper limb tracking using depth information for rehabilitative tangible tabletop systems, in 9th International Conference on Disability, Virtual Reality & Associated Technologies. Laval, France: The University of Reading; 2012. p. 463–466.Alt Murphy M, Resteghini C, Feys P, Lamers I. An overview of systematic reviews on upper extremity outcome measures after stroke. BMC Neurol. 2015;15:29.Sloan RL, Sinclair E, Thompson J, Taylor S, Pentland B. Inter-rater reliability of the modified Ashworth Scale for spasticity in hemiplegic patients. Int J Rehabil Res. 1992;15(2):158–61.van der Ploeg RJ, Fidler V, Oosterhuis HJ. Hand-held myometry: reference values. J Neurol Neurosurg Psychiatry. 1991;54(3):244–7.Duncan PW, Propst M, Nelson SG. Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther. 1983;63(10):1606–10.Miyamoto S, Kondo T, Suzukamo Y, Michimata A, Izumi S. Reliability and validity of the Manual Function Test in patients with stroke. Am J Phys Med Rehabil. 2009;88(3):247–55.Woodbury M, Velozo CA, Thompson PA, Light K, Uswatte G, Taub E, et al. Measurement structure of the Wolf Motor Function Test: implications for motor control theory. Neurorehabil Neural Repair. 2010;24(9):791–801.Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther. 1985;39(6):386–91.Oxford Grice K, Vogel KA, Le V, Mitchell A, Muniz S, Vollmer MA. Adult norms for a commercially available Nine Hole Peg Test for finger dexterity. Am J Occup Ther. 2003;57(5):570–3.Hammer AM, Lindmark B. Responsiveness and validity of the Motor Activity Log in patients during the subacute phase after stroke. Disabil Rehabil. 2010;32(14):1184–93.Bullinger HJ, F.-I.f.A.u. Organisation, and U.S.I.f.A.u. Technologiemanagement. Human Aspects in Computing: Design and use of interactive systems and work with terminals. Elsevier; 1991.McAuley E, Duncan T, Tammen VV. Psychometric properties of the Intrinsic Motivation Inventory in a competitive sport setting: a confirmatory factor analysis. Res Q Exerc Sport. 1989;60(1):48–58.Mazzoleni S, Sale P, Tiboni M, Franceschini M, Carrozza MC, Posteraro F. Upper limb robot-assisted therapy in chronic and subacute stroke patients: a kinematic analysis. Am J Phys Med Rehabil. 2013;92(10 Suppl 2):e26–37.Lin KC, Hsieh YW, Wu CY, Chen CL, Jang Y, Liu JS. Minimal detectable change and clinically important difference of the Wolf Motor Function Test in stroke patients. Neurorehabil Neural Repair. 2009;23(5):429–34.Fu TS, Wu CY, Lin KC, Hsieh CJ, Liu JS, Wang TN, et al. Psychometric comparison of the shortened Fugl-Meyer Assessment and the streamlined Wolf Motor Function Test in stroke rehabilitation. Clin Rehabil. 2012;26(11):1043–7.Hsieh YW, Wu CY, Lin KC, Chang YF, Chen CL, Liu JS. Responsiveness and validity of three outcome measures of motor function after stroke rehabilitation. Stroke. 2009;40(4):1386–91.van der Lee JH, Beckerman H, Lankhorst GJ, Bouter LM. The responsiveness of the Action Research Arm test and the Fugl-Meyer Assessment scale in chronic stroke patients. J Rehabil Med. 2001;33(3):110–3.Wolf SL, Catlin PA, Ellis M, Archer AL, Morgan B, Piacentino A. Assessing Wolf Motor Function Test as Outcome Measure for Research in Patients After Stroke. Stroke. 2001;32(7):1635–9.Reinkensmeyer DJ, Wolbrecht ET, Chan V, Chou C, Cramer SC, Bobrow JE. Comparison of three-dimensional, assist-as-needed robotic arm/hand movement training provided with Pneu-WREX to conventional tabletop therapy after chronic stroke. Am J Phys Med Rehabil. 2012;91(11 Suppl 3):S232–41.Takahashi CD, Der-Yeghiaian L, Le V, Motiwala RR, Cramer SC. Robot-based hand motor therapy after stroke. Brain. 2008;131(Pt 2):425–37.Sale P, Mazzoleni S, Lombardi V, Galafate D, Massimiani MP, Posteraro F, et al. Recovery of hand function with robot-assisted therapy in acute stroke patients: a randomized-controlled trial. Int J Rehabil Res. 2014;37(3):236–42.Hwang CH, Seong JW, Son DS. Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy. Clin Rehabil. 2012;26(8):696–704.Timmermans AA, Seelen HA, Willmann RD, Kingma H. Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design. J Neuroeng Rehabil. 2009;6:1.Levin MF, Kleim JA, Wolf SL. What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil Neural Repair. 2009;23(4):313–9.Rosati G, Oscari F, Spagnol S, Avanzini F, Masiero S. Effect of task-related continuous auditory feedback during learning of tracking motion exercises. J Neuroeng Rehabil. 2012;9:79.Imam B, Jarus T. Virtual reality rehabilitation from social cognitive and motor learning theoretical perspectives in stroke population. Rehabil Res Pract. 2014;2014:594540.Schuster-Amft C, Henneke A, Hartog-Keisker B, Holper L, Siekierka E, Chevrier E, et al. Intensive virtual reality-based training for upper limb motor function in chronic stroke: a feasibility study using a single case experimental design and fMRI. Disabil Rehabil Assist Technol. 2015;10(5):385–92.Llorens R, Noe E, Colomer C, Alcaniz M. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(3):418–25. e2.Llorens R, Gil-Gomez JA, Alcaniz M, Colomer C, Noe E. Improvement in balance using a virtual reality-based stepping exercise: a randomized controlled trial involving individuals with chronic stroke. Clin Rehabil. 2015;29(3):7

    QF2011: a protocol to study the effects of the Queensland flood on pregnant women, their pregnancies, and their children's early development

    Get PDF

    Impairment of Auditory-Motor Timing and Compensatory Reorganization after Ventral Premotor Cortex Stimulation

    Get PDF
    Integrating auditory and motor information often requires precise timing as in speech and music. In humans, the position of the ventral premotor cortex (PMv) in the dorsal auditory stream renders this area a node for auditory-motor integration. Yet, it remains unknown whether the PMv is critical for auditory-motor timing and which activity increases help to preserve task performance following its disruption. 16 healthy volunteers participated in two sessions with fMRI measured at baseline and following rTMS (rTMS) of either the left PMv or a control region. Subjects synchronized left or right finger tapping to sub-second beat rates of auditory rhythms in the experimental task, and produced self-paced tapping during spectrally matched auditory stimuli in the control task. Left PMv rTMS impaired auditory-motor synchronization accuracy in the first sub-block following stimulation (p<0.01, Bonferroni corrected), but spared motor timing and attention to task. Task-related activity increased in the homologue right PMv, but did not predict the behavioral effect of rTMS. In contrast, anterior midline cerebellum revealed most pronounced activity increase in less impaired subjects. The present findings suggest a critical role of the left PMv in feed-forward computations enabling accurate auditory-motor timing, which can be compensated by activity modulations in the cerebellum, but not in the homologue region contralateral to stimulation

    Functional MRI and Diffusion Tensor Imaging of Brain Reorganization After Experimental Stroke

    Get PDF
    The potential of the adult brain to reorganize after ischemic injury is critical for functional recovery and provides a significant target for therapeutic strategies to promote brain repair. Despite the accumulating evidence of brain plasticity, the interaction and significance of morphological and physiological modifications in post-stroke brain tissue remain mostly unclear. Neuroimaging techniques such as functional MRI (fMRI) and diffusion tensor imaging (DTI) enable in vivo assessment of the spatial and temporal pattern of functional and structural changes inside and outside ischemic lesion areas. This can contribute to the elucidation of critical aspects in post-stroke brain remodeling. Task/stimulus-related fMRI, resting-state fMRI, or pharmacological MRI enables direct or indirect measurement of neuronal activation, functional connectivity, or neurotransmitter system responses, respectively. DTI allows estimation of the structural integrity and connectivity of white matter tracts. Together, these MRI methods provide an unprecedented means to (a) measure longitudinal changes in tissue structure and function close by and remote from ischemic lesion areas, (b) evaluate the organizational profile of neural networks after stroke, and (c) identify degenerative and restorative processes that affect post-stroke functional outcome. Besides, the availability of MRI in clinical institutions as well as research laboratories provides an optimal basis for translational research on stroke recovery. This review gives an overview of the current status and perspectives of fMRI and DTI applications to study brain reorganization in experimental stroke models
    corecore